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Abstract: The Electronic-Topological (ETM) and Neural Network methods were applied to the study of the
"structure–acetylcholinesterase (AChE) inhibitor activity" relationships for a series of physostigmine and N-
benzylpiperidine derivatives. Molecular fragments specific for active compounds and breaks of activity were
calculated for human AChE by applying the ETM and Neural Network methods. Requirements necessary for a
compound to be active were formulated; they are the result of detailed analysis of all compounds under study. A
comparative study of the activity features found for human AChE was performed.
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INTRODUCTION determined or calculated) that relate to physico-
chemical properties of the compounds. The QSARs of
AChE inhibitors were reviewed recently [8-16];

Alzheimer's disease (AD), the most common cause of
dementia in the elderly, is a chronic, slowly progressive
neurodegenerative disorder with characteristic deterioration of
intellectual capacity in various domains: learning and
memory, language abilities, reading and writing, praxis,
interaction with the environment. One of the few undisputed
evidences in the neuropathology of the AD is the loss of
cholinergic neurons occurring in different areas of the central
nervous system, mainly the cerebral cortex and the
hippocampus [1-5].

3. Electronic-topological method (ETM), which is a
structural approach designed for the investigation of
structure-property relationships. In "structure-AChE
inhibitor activity" [17] relationship studies had been
performed for three series of N-benzylpiperidine
derivatives by using the ETM. The results of the
study show how the use of the ETM makes it
possible to bypass the incompatibility problem as to
the experimental data.One promising therapeutic strategy for activating central

cholinergic functions has been the use of inhibitors of
acetylcholinesterase (AChE). This enzyme is responsible for
the metabolic hydrolysis of acetylcholine. Tacrine,
donepezil, and rivastigmine are acetylcholinesterase
inhibitors that increase the levels of acetylcholine at the
synapse by blocking the breakdown of the neurotransmitter
[6].

The present study that uses the ETM and Neural
Network methods as well, aims at finding new AChE
inhibitors that can be useful against AD.

MATERIALS AND METHODS

Data Sets
Previous computational studies can be divided into three

groups:
Compounds under study (73 molecules in total [18-22]

are shown in Table 1. Their common structural skeletons are
given in (Fig. 1). that shows how compounds under study
belong to different structural classes. Skeletons A, B and F
represent various derivatives of 4-(3-benzisoxazolylethyl)-N-
benzylpiperidine. Molecular skeletons C, D, and E represent
modifications performed on the structure of the natural
product physostigmine.

1. Approaches used to model ligand-receptor interaction
through docking (molecular dynamics); these have
been applied to only small series [7];

2. Quantitative structure-activity relationship (QSAR)
studies that use either Comparative Molecular field
analysis (CoMFA) or conventional 2D QSAR
methods. Mainly, this methodology aims at the
development of simple mathematical models that
correlate changes in biological activity with variations
in the structure of molecules. These variations are
accounted for by parameters (experimentally

Table 1 reports calculated and experimental log 1/IC50,
measured on human erythrocyte AChE of 73 compounds.
Molecules under study were classified as active compounds
(31 molecules with log 1/IC50 ≥ 7.24), low-active ones (13
molecules with 7.22 ≤ log 1/IC50 ≤ 6.81) and inactive
compounds (29 molecules with log 1/IC50 < 6.80).

To identify activity features (or pharmacophores), the
ETM-calculations were carried out twice: first, low-active
compounds were considered as belonging to the active class,
and then as belonging to the inactive class.
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Table 1. In Vitro Inhibition of Human AChE by Physostigmine and N-Benzylpiperidine Derivatives and Prognostigation of
Activity

No. Skel-
eton

X R1 R2 log 1/IC50 No Skel-
eton

X R1 R2 log 1/IC50

Exper Theor Exper Theor

1 A A1 9.48 8.27 38 D n-C4H9 C2H5 CH3 7,05 7.35

2 A A2 9.32 8.30 39 D n-C7H15 n-C3H7 CH3 7,03 6.90

3 A A3 9.24 8.26 40 B 6-CN 7,00 7.30

4 B B1 9,10 8.30 41 F (CH2)2 NH 6,97 7.20

5 A A4 9,02 8.41 42 D n-C7H15 CH3 CH3 6,94 7.30

6 B 6-NHCOCH3 8,55 8.35 43 C 4-CH3Ph CH3 6,86 6.75

7 A A5 8,44 8.35 44 D n-C3H7 C2H5 CH3 6,81 6.92

8 B 5,6-(CH3)2 8,24 8.36 45 D C6H5 C2H5 CH3 6,75 6.82

9 B 7-OCH3 8,15 8.36 46 D n-C6H13 C2H5 H 6,68 5.82

10 B 5-OCH3 8,14 8.37 47 F (CH2)2 CH=CH 6,66 6.51

11 B 5-CH3 8,11 8.34 48 D CH3 C2H5 H 6,60 6.45

12 B 6-OCH3 8,08 8.38 49 C C8H17 CH3 6,54 6.52

13 B 6-CONH2 8,06 8.37 50 C 4-i-C3H7Ph H 6,49 6.39

14 B 6-NHCOC6H5 8,03 8.38 51 F NH-CH2 O 6,49 6.35

15 C 2-C2H5Ph CH3 8,01 8.11 52 F (CH2)2 N=CH 6.47 6.29

16 C 2-CH3Ph CH3 7,99 7.75 53 E 7 6,42 6.24

17 C 2,4-(CH3)2Ph CH3 7,87 7.85 54 D n-C7H15 C2H5 H 6,42 6.23

18 C Ph H 7,86 7.64 55 C 2-ClPh CH3 6,31 6.32

19 B 6-NHSO2C6H5 7,85 7.99 56 D n-C7H15 CH2C6H5 CH3 6,30 5.87

20 C 2-i-C3H7Ph CH3 7,81 7.62 57 D n-C6H13 n-C3H7 H 6,26 5.84

21 C 2-CH3Ph H 7,77 7.39 58 D n-C7H15 n-C3H7 H 6,20 5.84

22 C 2,4-(CH3)Ph H 7,76 7.35 59 E 2 6,16 6.67

23 B 6-NH2 7,70 7.81 60 C 4-i-C3H7Ph CH3 6,12 5.99

24 C Ph CH3 7,62 8.38 61 F NH(CH2)2 O 6.09 5.89

25 B 6-OH 7,59 7.30 62 F (CH2)3 O 6.05 5.87

26 C CH3 CH3 7,52 8.39 63 E 6 6,03 5.93

27 D CH3 C2H5 CH3 7,42 7.20 64 D n-C4H9 C2H5 H 5,97 5.89

28 D n-C6H13 C2H5 CH3 7,35 6.99 65 C 2,4,6-(CH3)3Ph CH3 5,89 5.79

29 B 6-Br 7,30 7.05 66 D CH(CH3)C6H5 C2H5 CH3 5,88 5.90

30 B H 7,26 7.02 67 C 2,6-(C2H5)24 -CH3Ph CH3 5,83 5.84

31 D n-C7H15 C2H5 CH3 7,24 8.42 68 D n-C3H7 C2H5 H 5,66 5.62

32 E 9 7,22 7.10 69 E 3 5,42 5.66

33 D n-C6H13 n-C3H7 CH3 7,21 7.12 70 E 5 5,12 5.99

34 C 2,6-(Cl)2Ph CH3 7,18 6.90 71 F O-CH2 O 5.59 5.52

35 D CH2C6H5 C2H5 CH3 7,16 7.40 72 D t-C4H9 C2H5 CH3 4,90 5.74

36 E 8 7,10 7.30 73 E 4 4,68 4.56

37 D n-C6H13 CH3 CH3 7,11 7.35
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Fig. (1). Common molecular skeletons of the compounds under study.

ET Method Description follows a common scheme for the pattern recognition, but it
has also some peculiarities that stem from complexity of the
“structure-property” problem. A pattern recognition-based
application consists of the following stages. The first stage is
known as data transforming, when input data must be
prepared in a predefined format. In the ETM-scheme, this
stage serves for an ETMC formation for every molecule Si.

The ETM can be considered as one of structure-based
approaches [23-26]. As all structural methods, it needs a
language for the compounds structure description (LCSD).
Because three-dimensional (3D) graphs are taken as models
for real molecules, mathematical structures used in the ETM
as LCSD are commonly used in QSAR matrices (one matrix
= one compound). However, the nature of their elements is
different. Instead of some global chemical properties
(lipophilicity, solubility) used in QSAR methods, the ETM
uses quantum-chemical, or electronic characteristics and data
taken from conformational analysis. Conformational analysis
and quantum chemistry calculations were carried out by
means of molecular mechanics method (MMP2) and semi-
empirical quantum chemistry method (AM1), respectively.

The second stage, pre-processing (known also as feature
selection) is to be done, aiming at the definition of common
molecular fragments (i.e. congruent subgraphs Sj

A, j∈J; “A”
means “responsible for the given activity”). They are
searched for in all structures Si, i∈I. A straightforward
solution is to search them by comparing, one by one,
molecular structures Si with a template S0 (an active
compound, if features of activity are searched). Algorithms
applied at this stage are named self-learning procedures. The
corresponding algorithm of the ETM needs a number of
initial parameters of the ETM algorithm. They are:

Diagonal elements of the matrices called Electronic-
Topological Matrices of Contiguity (ETMC, for short)
reflect one or more atomic properties (represented by a
separate value or a vector of characteristics). Off-diagonal
elements characterise bonds between pairs of atoms, if they
exist, or distances, otherwise. (Usually, only the upper
triangle of the matrix is used in calculations because of the
symmetry of bonds.) Values of the bond properties can be
also represented by one or more values. However, only one
value is used in calculation for simplicity. If there are more
than one properties for atoms and bonds, the ETM
calculations can be repeated for every separate property. The
formal description of the ETM can be found in [17].

a) A threshold of activity, which allows the separation of
all compounds into corresponding groups;

b) A template molecule for the comparison;

c) Values ∆1-3 that are used to fix a definite level of
flexibility of molecules;

d) A desired value of a criterion CA(Sj
A) (probability of a

fragment Sj
A presence in the set {Sk

A} of molecular
structures).

The estimation of the probability for a Sj
A, is calculated

by the following formula proved in structural methods:Computational part of the ETM is a sequence of the
following steps:

CA (Sj
A) = (LA+1)/( LA +  LNA +2) (1)

• Conformational analysis
Where LA, LNA are numbers of compounds from the

{Sk
A} and {Sk

NA} sets, respectively, which contain the Sj
A

fragment. If the fragments found satisfy the criterion CA and
are informative enough, from the point of view of the
researcher, the procedure stops. Otherwise, it is repeated with
different initial settings.

• Quantum–chemical calculations

• ETMCs formation

• Processing ETMCs (the search of the structural
features responsible for activity/inactivity by
comparing a template active/inactive compound with
the rest of compounds). Next important stage in both indirect methods and some

structural ones is an examination procedure. In the case of
the ETM application, however, the found fragments can beThe last two steps represent the essential part of the

ETM. The core of the ETM-software (see Fig. 2) mainly
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Fig. (2). Common scheme of ETM.

used immediately, if they satisfy some conditions
superimposed by the researcher. At the same time, the
examination procedure is applied when the researcher wants
to validate the stability  of the fragments selected. This is
done by the “leave-one-alone” technique, when all
compounds from the set {Sk

A} are tried as templates for
matrices’ comparison. In contrast to many other methods in
the ETM, this task is fulfilled by the same procedure as the
one used at the previous step. The features validation is
obligatory, when a quantitative (functional) model is to be
developed on the basis of the fragments found (as usually is
the case of indirect methods).

When used together, both types of features represent valuable
information for the design of new compounds with the
desired activity A.

NEURAL NETWORK METHOD

Artificial Neural Networks (ANNs) is a group of methods
that are increasingly being used in drug design to study
QSAR [27, 28]. This method is able to elucidate structure-
activity relationships and take into account any non-linear
character of these relationships. Thus, this method can be of
significant interest in 3D QSAR studies.

The concluding step is the development of a set of
decision rules for the activity (A) prediction. In the ETM,
this set is represented by a set of molecular substructures
(represented by submatrices of ETMCs, or by ETSA, for
short) and some numerical data that are important for
recognising new molecular structures possessing the activity
A. When having such set, the given property P prediction
consists in the search of congruent subgraphs in all
abovementioned structures Si. Again, this procedure follows
the same steps as the procedures for features selection and
validation, but its initial settings ∆1-3 and CP are those
calculated at the first step, and templates are exactly the
features selected.

For the analysis of the data we have used one of the most
well-known neural networks - the feed forward neural
networks (FFNNs) trained with the back propagation
algorithm [29, 30]. The architecture of the ANNS was
consisted of three-layers with five neurons in one hidden
layer. One single output node was used to code activities of
AChE inhibitors. The bias neuron was presented on the
input and on the hidden layer. At least M=200 independent
FFNN were trained to analyse each set of variables. The
predicted values of each analysed case were averaged over all
M network predictions and the means were used to calculate
statistical coefficients with targets. The other details of the
algorithm can be found elsewhere [31, 32].

When successfully found, a feature Sj
A elucidates core

mechanisms of the receptor-ligand interactions. But a similar
study can be carried out when the user wishes to find ‘breaks
of activity’, which indirectly characterise sterically
inaccessible and/or electronically forbidden regions of
receptors. They are fragments that are common to all
compounds from {Sl

NA, for all l} and cannot be found in the
compounds from {Sk

A, for all k}. (It is noteworthy that for a
break of activity Sj

NA the criterion CNA looks similar.)

The avoidance of overfitting/overtraining has been shown
to be an important factor for the improvement of predictive
ability and correct selection of variables in the feed forward
neural networks [31]. The Early Stopping over Ensemble
(ESE) technique was used in the current study to accomplish
this. A detailed description of ESE can be found in [31, 32].
In brief, each analysed artificial neural network ensemble
(ANNE) was composed of M=200 networks. The values
calculated for analysed cases were averaged over all M neural
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Fig. (3). The P1(a), P2(b) and P3(c) pharmacophores found relative to active molecules 1, 4 and 5 respectively.

networks, and their means were used for computing
statistical coefficients with targets. We used a subdivision of
the initial training set into two equal learning/validation
subsets. The first set was used to train the neural network
while the second one was used to monitor the training
process measured by root mean square error. An early
stopping point determined as a best fit of a network to the
validation set was used to stop the neural network learning.
Thus, statistical parameters calculated at the early stopping
point were used. The training was terminated by limiting
the network run to 10, 000 epochs (total number of epochs)
or after 2, 000 epochs (local number of epochs) following the

last improvement of root–mean-square error in the early
stopping point. The root–mean-square error E was computed
as a criterion of network learning to determine the stop
points of a training procedure. The quality of the model was
tested by the leave-one-out cross-validation q2 value defined
as:

q2 = (SD-press)/SD;

Introduced by Cramer et al. [33]. Here SD represents the
variance of a target value relative to its mean and 'press' is
the average squared errors of predicted values obtained from
leave-one-out (LOO) procedure.
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The LOO cross-validation procedure was used to
supervise the predictive performance of ANN.

The pharmacophore was found in 19 of 31 active
compounds, and it was not found in inactive compounds at
all. Thus, the probability CA of its realisation in the active
class is about 0.95. As seen from the pharmacophore’s
structure, it consists of the C6, C8 atoms of the phenyl, and
C9, C12, C15, C16, N18, O20 atoms.

It has been shown that pruning algorithms [34, 35] may
be used to optimise the number of input parameters for
ANNs learning and to select the most significant ones.
These algorithms operate in a manner similar to step-wise
multiple regression analysis and exclude on each step one
input parameter that was estimated to be non-significant.
The pruning algorithms were used in the current study to
determine significant parameters of input data points of the
analysed molecules as described in references [34, 35].

Pharmacophore P2 was calculated relative to the template
molecule 4 in a similar way as for P1 (see Fig. 3b). The P2
was found in 22 active compounds and it was not found in
inactive compounds at all (correspondingly, the probability
of its appearance is estimated as 0.96). The P2 includes five
atoms in total, as seen from (Fig. 3b).

RESULTS AND DISCUSSION Pharmacophore P3 was calculated by taking compound 5
as the template for comparison. The P3 includes seven
atoms, which are carbon atoms C5, C8, of the phenyl cycle
and two carbons, C14, C15, C16, N18, O20. They belong to
different parts of the template molecule, and, as seen from
(Fig. 3c), they represent the most important two parts of all
active molecules.

According to the common scheme of the ETM,
conformational analysis and quantum chemistry calculations
were carried out for all compounds in the series under study.
As the result of the conformational analysis, conformational
structures with global minimum of their energies are to be
found.

In Figure 4, the superimposition of three template
compounds that correspond to the calculated pharmacophores
P1 – P3 is shown. In 3D space three separate regions can be
indicated for each active molecule, where atoms of the three
pharmacophores can be found.

Pharmacophores and Anti-Pharmacophores Calculation

Electronic and steric parameters responsible for the
activity form a matrix, which is a submatrix of the
corresponding template ETMC. As it was already said, such
submatrix is called the electron-topological submatrix of
activity (ETSA). So, the activity feature (or pharmacophore)
P1 was calculated by taking molecule 1 as template
compound (∆1= ± 0.05, ∆2= ± 0.10). The P1 is shown in
(Fig. 3a) along with its ETSAP1.

These regions are shown in the (Fig. 4) by dotted lines.
One of them is formed by the atoms belonging to the phenyl
ring, while the other two are formed by the atoms that
represent the heterocyclic rings. It is quite possible that the
atoms from these regions play an important role in the
ligand-receptor interaction.

Fig. (4). Template compounds 1, 4 and 5 alignment by superposing the P1, P2 and P3 features.
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Fig. (5). The AP1(a), AP2(b) and AP3(c) anti-pharmacophore found relative to inactive molecules 67, 68 and 72  respectively.

When building a system for the activity prediction, those
fragments of molecule are also to be taken into account,
which are capable of deactivating an active structure (‘breaks
of activity’, or anti-pharmacophores). An anti-pharmacophore
AP1 was found from template compound 67 (see Fig. 5a).
AP1 contains seven atoms belonging to different parts of the
template molecule 67. These atoms are C3, C11 C16, C18,
C20, C24 and C29. Peculiarities of electronic-topological
parameters such as atomic charges, bond multiplicities and

interatomic 3D distances for the atoms can be seen from its
ETSCAP1. 3D distances used at place of some off-diagonal
elements in the ETSAAP1 are close enough. AP1 feature was
found in 21of 29 inactive compounds. It was found 2 in
active compounds. So, the probability of its realisation
(CNA) in this class of compounds is about 0.88.

Anti-pharmacophore AP2 was calculated from the
template compound 68. The atoms C3, C10, C15, C17, C18,
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Fig. (6). Frequency of the fragments’ occurrence in the compounds from the studied series for pharmacophores P1 ÷ P3 and for anti-
pharmacophores AP1 ÷ AP3.

C20, and C21 depicted in (Fig. 5b) were found incapable of
hydrogen bonds formation with the receptor. The AP2 was
found in 18 of 29 inactive compounds and 2 active
compounds. Thus, the probability of its realisation was
calculated as 0.86.

The ability of the aforementioned system to divide
compounds of the training set into classes of
activity/inactivity is illustrated in (Fig. 6) by frequencies of
the fragments occurrence in the compounds of the training
set. The frequencies are shown in dependence with the level
of AChE inhibition activity of the compounds in view.From the compound 73 taken as the template, the anti-

pharmacophore AP3 was calculated. The activity feature was
found in 18 inactive compounds and in two of active
compounds. As seen from (Fig. 5c), AP3 includes 7 atoms.
The probability of its realisation in inactive compounds is
equal to 0.86. Molecules become inactive ones H replaces
methyl group in the R2 position to the D skeleton (see
molecules 46, 48, 54, 56, 58, 64, 68 in Table 1).

As seen from the graph in the (Fig. 6), in the class of
active compounds there is a group of high- active
compounds and another group of compounds of moderate
activity. The value of log 1/IC50 ~ 7, 22-6.81 serves as a
boundary between the two groups.

Neural Network Studies
A para-substituted phenyl decreases the inhibiting

activity of the compounds with skeleton C (compare
compounds 16, 43, and also compounds 20, 60). Elongation
of the substituents attached to nitrogen atoms (compare
molecules 28, 31, 38 and 44) causes the increase of
inhibitory activity. The lengths of the chains of groups
attached to molecules 44, 38, 28, 31 grow respectively.
Activity increases up to certain chain length (compounds 44,
38, 28) and then decreases with the further growth of the
chain length (27, 31). The same situation was observed in
the series of molecules 68, 64, 46 and 54 (Skeleton D).

15 pharmacophores and 15 anti-pharmacophores
descriptors were used as parameters for the analysis with
ANNs. The performance of neural networks was evaluated by
LOO statistical coefficients calculated at early stopping point
for the training data set. The high cross-validation value q2 =
0.78±0.01 confirms the validity of the model for predicting
activity of AChE inhibitors. At the second stage of analyses
we decided to examine, if all 30 descriptors attributes are
relevant for the prediction of activity AChE inhibitors.
Application of pruning methods allowed to select only nine

Fig. (7). Neural network leave-one-out cross validation log 1/IC50 results.
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most relevant parameters (P1-P4, P11, P12, AP1-AP4,
AP6, AP10) responsible for AChE inhibitor activities. The
calculated result shows that the cross-validation value q2=
0.81±0.01 as illustrated in (Fig. 7), a strong linear
dependency was obtained between the corresponding
predicted and experimental values of the AChE inhibitor
activities.
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